Welcome to BaiKit’s documentation!
- class baikit.Data(manifest_fn, manifest_dir='input/manifest/')
Bases:
object
Base class of BaiKit
- manifest_fn
Manifest filename.
- Type:
str
- line_dir
Default: “”
- Type:
str
- line_ext
Default: “.txt”
- Type:
str
- line_loadtxt
Default: {“comments”: “#”, “delimiter”: None, “skiprows”: 0, “unpack”: False, “encoding”: “latin1”}
- Type:
dict
- load_manifest() ndarray
Load manifest
Loads manifest file and return manifest lines in list.
- Returns:
List of manifest lines.
- Return type:
numpy.ndarray
- class baikit.WrangleData(manifest_fn, manifest_dir='input/manifest/')
Bases:
Data
Wrangling data
Wrangles data for later use.
- load_data(manifest_line_index) tuple[numpy.ndarray, str, str]
Convert manifest line to data
Loads data from manifest line.
- Parameters:
manifest_line_index (int) – Line number of the manifest line.
- Returns:
Data, line filename, and line tag.
- Return type:
tuple[numpy.ndarray, str, str]
- save_data(data, line_fn, line_tag)
Convert data to manifest line
Saves data as specified in manifest line, and print manifest line.
- Parameters:
data (numpy.ndarray) – Data to save.
line_fn (str) – Line filename.
line_tag (str) – Line tag.
- unique_col0(data) ndarray
Find the unique values in 1st column
Returns data where the values in 1st column are unique (duplicates removed) and sorted.
- Parameters:
data (numpy.ndarray) – Input ndarray.
- Returns:
Output ndarray.
- Return type:
numpy.ndarray
- find_peak(data, peakregion_boundaries) tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]
Find single peak
Finds a single peak within peak region boundaries.
- Parameters:
data (numpy.ndarray) – Data.
peakregion_boundaries (numpy.ndarray) – ndarray of the peak region boundaries of the peak.
- Returns:
Data within peak region, peak value, and data generated from fitted model.
- Return type:
tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]
- find_peaks(data, peakregion_boundaries) ndarray
Wrapper of find_peak()
Finds multiple peaks within a series of peak region boundaries.
- Parameters:
data (numpy.ndarray) – Data.
peakregion_boundaries (numpy.ndarray) – A 2-D ndarray of peak region boundaries.
- Returns:
Peaks values.
- Return type:
numpy.ndarray
- shift_col0(data, peakregion_par, col0_precision=4) tuple[numpy.ndarray, numpy.ndarray, float]
Shift column 0
Shifts column 0 of data according to peakregion_par.
- Parameters:
data (numpy.ndarray) – Input data.
peakregion_par (numpy.ndarray) – An ndarray of two elements, the 1st one is the peak center, the 2nd one is peak half width.
col0_precision (int, optional) – Column 0 data output precision. Default: 4
- Returns:
Output data, peak value, and diff.
- Return type:
tuple[numpy.ndarray, numpy.ndarray, float]
- stretch_col1(data, peaksregion_boundaries, height, col1_precision=4) tuple[numpy.ndarray, float]
Stretch column 1
Stretches column 1 of data to height.
- Parameters:
data (numpy.ndarray) – Input data.
peaksregion_boundaries (numpy.ndarray) – An ndarray of two elements, the 1st one is left boundary, the 2nd one is right boundary.
height (float) – The average height within boundaries that the data are stretched to.
col1_precision (int, optional) – Column 1 data output precision. Default: 4
- Returns:
Output data and coeff.
- Return type:
tuple[numpy.ndarray, float]
- raman_calib(data) ndarray
Calibrate Raman spectrum
Calibrates shift with Si’s 1st order peak position (520 cm^-1). Calibrates intensity with Si’s 2nd order peak average height.
- Parameters:
manifest_line_index (int) – Line number of the manifest line.
- Returns:
Calibrated Raman spectrum.
- Return type:
numpy.ndarray
- class baikit.PlotData(plot_title, manifest_dir='input/manifest/')
Bases:
Data
Plot figure
Plots figure of 2-D data.
- plot_figsize
Default: (6.4, 4.8)
- Type:
tuple
- plot_title_flag
Default: False
- Type:
bool
- plot_title
- Type:
str
- plot_title_fontsize
Default: 14
- Type:
float
- plot_xlabel
Default: “”
- Type:
str
- plot_ylabel
Default: “”
- Type:
str
- plot_label_fontsize
Default: 18
- Type:
float
- subplots_layout
Default: numpy.array([[2 * x - 1, 2 * x] for x in range(4, 0, -1)]).reshape(4, 1, 2)
- Type:
numpy.ndarray
- subplots_tag
Default: numpy.array([f”example_{x}” for x in range(4, 0, -1)]).reshape(4, 1)
- Type:
numpy.ndarray
- subplots_annotate_xyoffset
Default: numpy.tile([0, -12], (4, 1, 2, 1))
- Type:
numpy.ndarray
- subplots_wspace
Default: 0
- Type:
float
- subplots_hspace
Default: 0
- Type:
float
- subplot_xlim
Default: []
- Type:
list
- subplot_ylim
Default: []
- Type:
list
- subplot_ylim_offset
Default: 0
- Type:
float
- subplot_xlabel
Default: “”
- Type:
list
- subplot_ylabel_flag
Default: True
- Type:
bool
- subplot_xscale
Default: “linear”
- Type:
list
- subplot_yscale
Default: “linear”
- Type:
list
- subplot_linewidth
Default: 1.5
- Type:
float
- subplot_legend_flag
Default: False
- Type:
bool
- subplot_legend_loc
Default: “best”
- Type:
str
- subplot_legend_fontsize
Default: 10
- Type:
float
- line_ystep
Default: 0
- Type:
float
- line_annotate_flag
Default: False
- Type:
bool
- line_annotate_x
The x position of the annotation. Default: 1200
- Type:
float
- line_annotate_interval
The x interval of the data. Default: 2
- Type:
float
- line_annotate_kwargs
Default: {“textcoords”: “offset points”, “horizontalalignment”: “center”, “fontsize”: 12, “bbox”: dict(boxstyle=”square”, alpha=0.8, ec=”w”, fc=”w”)}
- Type:
dict
- line_print_flag
Default: True
- Type:
bool
- persistent_styles_flag
Default: False
- Type:
bool
- persistent_styles
Default: defaultdict(lambda: next(loop_cy_iter))
- Type:
dict
- init_figure()
Initialise figure
Creates subplots with axes.
- subplots_shape
- Type:
numpy.ndarray
- manifest_lines_fields
- Type:
numpy.ndarray
- subplot_x_tick_params
Default: {“which”: “both”, “direction”: “in”, “width”: self.subplot_linewidth, “labelsize”: 15, “bottom”: True, “top”: False, “labelbottom”: True}
- Type:
dict
- subplot_y_tick_params
Default: {“which”: “both”, “direction”: “in”, “width”: self.subplot_linewidth, “labelsize”: 15, “left”: False, “right”: False, “labelleft”: False}
- Type:
dict
- fig
- Type:
Figure
- gs
- Type:
GridSpec
- axs
List of Axes.
- Type:
list
- subplot_cycler
Default: (cycler(color=palettable.tableau.Tableau_10.mpl_colors) * cycler(linewidth=[1.5]) * cycler(markersize=[5]))
- Type:
Cycler
- save_figure()
Save figure
Saves current figure to output folder, with some settings.
- plot_subplots()
Wrapper of subplot_lines()
Plots subplots.
- subplot_lines(i, j, its)
Wrapper of line()
Wraps lines into a subplot.
- Parameters:
i (int) – Row number of subplot grid.
j (int) – Column number of subplot grid.
its (numpy.ndarray) – Iteration numbers.
- line(manifest_line_index, i, j, its) ndarray
Plot line
Plots an ndarray of 2-D data.
- Parameters:
manifest_line_index (int) – Row number of manifest line.
i (int) – Row number of subplot grid.
j (int) – Column number of subplot grid.
its (numpy.ndarray) – Iteration numbers.
- Returns:
Iteration numbers.
- Return type:
numpy.ndarray
|
Base class of BaiKit |
|
Wrangling data |
|
Plot figure |